Order of Operations

Lesson Overview

In this lesson, students will review order of operations using Agree/Disagree Statements.

Standards Addressed

6.EE. 4 Identify when two expressions are equivalent (i.e., when the two expressions name the same number regardless of which value is substituted into them). For example, the expressions $y+y+y$ and $3 y$ are equivalent because they are the same number regardless of which number y stands for.

Disciplinary Literacy Best Practices

Agree and Disagree Statements
Exit Ticket

Lesson Plan

Time Required: One 60-minute Class Period
Disciplinary Vocabulary: order of operations, exponent, expression, equation, variable Materials Needed:
Pre-made A \& D Statements for specific topic (1 per student)

Assessment:

A/D Statements, Student Dialogue

Engage

- Students are asked, "How can you represent numbers in different ways?"
- Students are continuing to work on representing numbers in different ways. For instance, $2 \times 2=4 \times 1$. Students continuing building on to expressions to represent different numbers. For instance, $16=8 \times 2,4^{2},(2 \times 4)+8,8+(8 \times 1)$, etc.
- Learning how to represent numbers in different ways leads into order of operations.

Explore

- Explain the process of Agree and Disagree Statements to students and that they will first explore these mathematical statements individually to review order of operations.
- Students are given a set of mathematical statements representing following the order of operations. Students are given a set amount of time to decide whether or not they agree, disagree, depends on, or not sure about the given statement.
- With each statement, students must jot down their thoughts about their answer to the statement.

Explain

- Students are then paired with another student to dialogue about each mathematical statement.
- Pairs discuss what they checked (agree, disagree, it depends on or not sure) and explain/justify why they chose that category.
- Once pairs dialogue, if there is a disagreement, they are to decide if they can come to an agreement and make any necessary changes.

Extend

0
Bring the class back together as a whole to dialogue about A/D Statements.

- For each mathematical statement, have students stand for the chosen category to get a quick assessment of the class. For example, after reading number 1, ask students to stand if they chose agree, then disagree, followed by it depends on and finally not sure.
- Have students justify why those have checked those categories OR perhaps they have changed their thinking now after talking with a partner.

Exit Ticket: Write on a notecard, scratch sheet of paper, post-it note (etc.): How do you feel about today's activity? Why?

Teacher Reflections and Biographical Information

A \& D Statements were a great way to review order of operations. A \& D Statements allow students a chance to not know an answer and it be okay. I placed limitations on using "not sure." I did not want students to choose it to be finished quicker. I also believe the next time I use A \& D Statements, I will make sure the students write what their thoughts are as to why they chose the answer they chose. Overall, I believe this lesson went well. As with any lesson, you may need to modify and adjust to suit your students.

Lesson Author:

Christy Junkins, $6{ }^{\text {th }}$ Grade Mathematics at the Middle School of Pacolet, Spartanburg School District 3 located in Spartanburg County, SC.

Order of Operations A \& D Statements

Name: \qquad Date: \qquad

Statement	How can You Find Out?	Explanation
1. $2+3^{2} \cdot 7-(10-4)=38$ \qquad agree \qquad disagree \qquad it depends on \qquad not sure My thoughts:		
2. $2+4 y \leq 22$ is an inequality. \qquad agree \qquad disagree \qquad it depends on \qquad not sure My thoughts:		
3. $15+6 y=56 ; y=5$ \qquad agree \qquad disagree \qquad it depends on \qquad not sure My thoughts:		
4. $11+48 \div 6 \cdot 4=43$ \qquad agree \qquad disagree \qquad it depends on \qquad not sure My thoughts:		
5. Kangaroos can cover 30 feet in one jump! If a kangaroo could jump like that x times in a row, he would need to jump 746 feet more to cover a mile. (1 mile $=5,280$ feet) \qquad agree \qquad disagree \qquad it depends on \qquad not sure My thoughts:		

Copyright 2014 S2 TEM Centers SC www.s2temsc.org

